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Boundary-layer flow past an impulsively started cylinder is studied by extending the 
Blasius time-series expansion to many terms. The ordinary differential equations that 
result from this expansion are solved using an O(hs)-accurate numerical method. The 
validity of the simple series expansions for the wall shear, displacement thickness and 
viscous displacement velocity is extended by recasting the series using rational 
functions. The solutions so obtained are in good agreement with previous authors’ 
work. In  particular, an examination of the poles and zeros of the rational functions 
confirms that a singularity develops within a finite time. The analytic structure of 
the singularity is found to be in agreement with the asymptotic expansion proposed 
by van Dommelen & Shen. 

1. Introduction 
An important question in unsteady large-Reynolds-number flow is how an initially 

attached boundary-layer solution develops into a separated flow including detached 
free shear layers. An often-studied model problem is that of a circular cylinder of 
infinite length which suddenly starts to move through a viscous incompressible fluid 
in a direction at right angles to its axis (figure 1). Experiments illustrating the 
development of this flow have been performed by Nagata, Minami & Murata (1979) 
and Bouard & Coutanceau (1980). 

Previous theoretical work on this problem can be split into two main categories. 
The first consists of numerical solutions of the Navier-Stokes equations a t  finite 
Reynolds numbers R. Solutions for R 2 200 have been found by, inter alia, Thoman 
& Szewczyk (1969), Son & Hanratty (1969), Dennis & Staniforth (1971), Collins & 
Dennis (1973a), Pate1 (1976) and Ta Phuoc Loc (1980). Solutions of the second 
category are those for which the boundary-layer approximation has been used. The 
first of these was obtained by Blasius (1908), who sought a series solution in powers 
of time. He obtained the first two terms of the series, and was able to calculate a first 
approximation to the time a t  which the flow reverses at the rear of the cylinder. 
Further terms of the series were calculated by Goldstein & Rosenhead (1936), Wundt 
(1955) and Collins & Dennis (1973b). This series method of solution has also been 
extended to finite but large Reynolds numbers, by Wang (1967), Collins & Dennis 
(19733) and Bar-Lev & Yang (1975). 

Finite-difference solutions of the boundary-layer equations using an Eulerian 

t Present address : Department of Mathematics, University College London, London WClE 6BT. 
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FIGURE i .  Flow past a circular cylinder. z and B are measured in 
radians and degrees respectively. 

coordinate system have been obtained by Dennis & Staniforth (1971), Collins &L 

Dennis (1973a), Cebeci (1979, 1982) and Wang (1979, 1982). Van Dommelen & Shen 
(1980) have also presented a finite-difference solution. I n  a novel approach, they used 
a Lagrangian coordinate system, and found that a singularity develops in the 
unsteady boundary-layer equations after a finite time. The numerical solution of 
Ingharn (1983), based on a series-truncation method, also supports the existence of 
this singularity. The aim of this paper is to solve the classical boundary-layer 
equations by numerically extending the series solution of Blasius (1908) to many 
terms. Flow quant,ities of interest are obtained by recasting the series using rational 
functions. Good agreement is found with previous results. Further, from a study of 
the positions of the poles and zeros of the rational functions, i t  is possible to obtain 
insight into the analytical structure of the solution. In  particular, an examination 
of the viscous displacement velocity confirms the existence of a singularity. 

2. Mathematical formulation 
The unsteady bonndary-layer equation and boundary conditions describing 

incompressible flow past an impulsively started circular cylinder, as given by, for 
example, Batchelor (1967) or Schlichting (1968) are 

$yt+$y$yZ-$z$yy = sinxcosx+$YyY’ ( 2 . 1 ~ )  

$ = O  for t < 0 ,  (2.1 b )  

$ = O ,  $ y = O  on y = O ,  (2 . lc )  

$,-+sinx as y-+co, t 2 0 .  ( 2 . 1 4  

The Cartesian coordinate x is measured along the surface of the cylinder from the 
front stagnation point,? while y is measured from the cylinder surface along the local 
normal (see figure 1 ) .  $ is the stream function and t is the time coordinate. The 
variables x, y, t and li/ have been non-dimensionalized by a ,  aR-4, a/2U and 2UaR-h 
respectively, where a is the radius of the cylinder, U is the velocity of the cylinder, 
and R =-; 2Ua/v is the Reynolds number of the flow for a fluid with viscosity v. 
Following Blasius (1908), the impulsive start is accounted for by the transformation 

7 2 -  $ = 2t+qx, 7, q, ( 2 . 2 ~ )  
2tt ’ 

t 1 is measured in radians. The equivalent angle in degrees will be referred to by 8. 
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and q3 i,u expanded as a power series in time: 

m 

(2.2b) 

Since the pressure gradient is a simple sinusoidal function, the &(x, 7) can be further 
expanded as 

r+l 

p-1 
4 r  = z s in~zf rp(7) .  (2.2c) 

On substihting (2.2) into (2.1 a ) ,  rearranging the nonlinear terms, and equating the 
coefficients of each of the tr sinpx terms, it is found that if r + p  is even then f r p  = 0,  
and that if r+p  is odd then 

The double sums S j r p  are given by 

r-1 min (j+1,  p-1) 

z z nv;n f ;  p--71 - f j n f l  p-  n ) 9 (2.36) 
S 1 r ~  = j - o  n-max ( 1 ,  p+j-r) 

( 2 . 3 ~ )  

(2.3d) 

where k = r -  1 -j, and the sums are zero if the upper bound of the index is less than 
the lower bound. Here a prime denotes differentiation with respect to 7. The 
accompanying boundary conditions, deduced from (2.1 W) ,  are 

f rp(0)  = f ;p(0)  = 0 for r 2 0, 1 < p < r +  1 ,  ( 2 . 4 ~ )  

f & + I ,  f i p + O  as 7+00, r 2  1 ,  1 < p  < r + l .  (2.4b) 

Blasius (1908) and Goldstein & Rosenhead (1936) have found analytical solutions for 
r < 2 in terms of exponential and error functions. However, analytical solutions for 
the higher-order terms rapidly become unwieldy. It was therefore decided to solve 
(2.3) numerically. 

3. Numerical solution 
Following Collins & Dennis (1973b), the system of equations (2.3) was solved using 

an O(h4)-accurate finite-difference scheme. This scheme, described by Fox (1957), 
works for second-order equations involving no first derivatives. Hence the transfor- 
mations f ; ,  = e-k'H,, and f:p = efv' Q r p  were introduced. The governing equations 
(2.3 a) then become 

Hrp - (4r + 1 + q2) Hrp  = 2eh' (S lrp  + AS,,., -SSrZ) - &), ( 3 . 1 ~ )  

RTNp - (4r - 1 + 7 2 )  a,., = 2eh' (Sir, + Sirp - Sirp ) .  (3 . lb)  

Denoting values a t  three successive grid points of a uniform grid of size h by the 
subscripts j - 1 ,  j and j + 1, the finite-difference approximation to (3.1 a )  used was 

( 1  -i$+lh2) (Hrp)j-1-(2+bjh2) (Hrplj + (1-i%j+lh2) (Hrp)j+l 

= ISh2(Pj+l + lop, + Pj+A (3.2) 
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where a(q) = 4r+ 1 +q2,  and @(q) is the right-hand side of (3 . la) .  Similar finite- 
difference formulae can be found (i) for the Q,, from (3.lb), and (ii) for the f r p  in 
terms of Q r p .  

The boundary conditions to apply to Hrp and f r p  on q = 0 follow directly from 
(2.4a), while the boundary conditions valid as y+ 03 were replaced by asymptotic 
conditions imposed on q = 7,. For instance, H r p  - hq-qe-k2 as q+ 00, where h and 
q are constants. Hence H i p ( q w )  - -7, H r p ( q W ) .  The use of asymptotic conditions 
instead of H i p ( q w )  x 0 proved to be a necessary improvement on previous authors’ 
work. The outer boundary conditions on the D were also replaced by asymptotic 
boundary conditions. However, there is no straightforward boundary condition to 
apply to the Q,, on q = 0. The following procedure was therefore adopted. First, 
(3.lb) was integrated to find the particular solution arp with 0,,(0) = 0, then the 
complementary function hrP of ( 3 . l b )  satisfying 0,,(0) = 1 was found. Using 
Romberg’s method, fip(0) and &JO) were next calculated by integrating e-k*arp 
and efS2firp respectively from 0 to 00. Finally, the necessary multiple of the 
complementary function was added to the particular solution in order to yield 

The tridiagonal matrices resulting from the finite-difference approximation were 
solved by Gaussian elimination with partial pivoting. In  addition, two step sizes h 
and 2h were used so that the solutions could be extrapolated to give O(he) accuracy. 

The calculations were performed on an IBM 3081. In order to check round-off error, 
runs were made in both double- and quadruple-precision arithmetic (16 and 33 figures 
respectively). The accuracy of the final solution was checked by varying both the 
number of grid points Nand position of the outer boundary 7, (note that h = TWIN). 

Comparisons were made between the present finite-difference solutions and the 
exact solutions for the first three terms found by Blasius (1908) and Wundt (1955). 
Good agreement was found, and the O(hs) accuracy of our method was confirmed. 
The present results also agreed with the finite-difference solutions for the first eight 
terms found by Collins & Dennis (19733). 

A comparison of runs with qm = 14, N = 768 and q ,  = 15, N = 1200 suggests that, 
for r = 46, maxp 1 f:p(0) I and maxp I f r p ( o o )  I are known to a t  least 3 and 7 significant 
figures respectively. The numerical values of the f r p  etc. are not tabulated here, but 
are available from the author on request. The data from a quadruple-precision run 
with q, = 15 and N = 1200 have been used to produce the results in the rest of this 
paper. This run, which calculated 51 terms of the series (i.e. the maximum value of 
r is 50), required 43 h of CPU time. The long run time is a result of both the slowness 
of quadruple-precision arithmetic and the O(r3N) operations required to calculate the 
sums Sjrp  on the right-hand sides of (3.1 a, b).  Input/output times are also significant 
because of the O(r2N) data values which need to be stored. 

r ? 

f : p ( o )  = 0. 

4. The flow quantities of interest 
The aim of this paper is to determine whether a singularity develops in the unsteady 

boundary-layer equations prior to the breakaway of a free shear layer (i.e. separation). 
Because (i) the outer irrotational flow is significantly changed by separation, and (ii) 
it  is viscous displacement velocity v, at the edge of the boundary layer that drives 
the perturbation to the outer flow, v, can be expected to grow rapidly as separation 
is approached. Consequently, vm should be a good indicator of the presence of any 
singularity . 

The boundary-layer displacement thickness S is another possible indicator of 
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separation. However, it  is a less sensitive guide, as illustrated by the Goldstein 
singularity for which v, is infinite but S is bounded. Further, unlike steady flows over 
fixed walls, i t  is not necessarily true for unsteady flows that separation is synonymous 
with the onset of wall shear reversal (Sears & Telionis 1975). Therefore, Pm 

examination of the wall shear 7 is less likely to reveal details of any singularity. 
However, in order for comparisons to be made with previous authors' work, graphs 
of 7 and 6, in addition to v,, will be presented. 

First, the following series representations for 7 ,  6 and v, are deduced from (2.2) : 

S(x, t )  = (1 -L) sin x dy 
sin px 

r-1 p-1 sin x 

m r+i 
x-4- c tr z frp(cx))- 

(4.1 a) 

(4 . lb )  

v,(x,t) = lim (v+ycosx) 

(4.1 c) 
m r+i  

r=1 p-1 
7c-~cosx- x tr x frp(oo)pcospx 

Each of these series is of the form 

(4.2a) 

The convergence of such series in the complex-time plane is confined to those times 
for which It1 < It*(x)l, where t*(x) is the location of the nearest singularity to the 
origin. For times with larger moduli, an approximate method of analytic continuation 
is provided by Pad6 approximants, or alternatively continued fractions. Pad6 
approximants have the form 

(4.2b) 

Continued fractions are an equivalent representation of the P2 and P$+l Pad6 
approximants, and have the form 

c,(x, t )  = co(z)/(l +C,(X) t / ( l  +c,(x) t /  .../( 1 +c,(z) t )  ...)). ( 4 . 2 ~ )  

The b,, cr and dr are determined uniquely by equating coefficients of equal powers 
oft between (4.2a) and the Taylor-series expansions of (4.2b, c). In  contrast to (4.2a), 
both Pad6 approximants and continued fractions usually fail to converge only near 
branch points or branch cuts of g.  They are able to represent singularities of g by 
suitably positioning the poles resulting from the zeros of the polynomial in the 
denominator. For further details concerning the theory and applications of rational 
functions see Baker (1965), Graves-Morris (1973), Cabannes (1976) or Bender & 
Orszag (1978). 

Rational functions have been used with success in water-wave theory by Schwartz 
(1974), Longuet-Higgins (1975), Rottman (1982) and others. Morf, Orszag & Frisch 
(1980) have also employed Pad6 approximants in the search for a singularity in the 
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FIGURE 2. Wall shear: 0, van Dommelen & Shen (1980), t = 0.5, 1.5, 2.5, 3.0; 
0, Wang (1982), t = 2.5, 2.8. 

time evolution of the inviscid Taylor-Green vortex problem. In the present study, 
as in the Taylor-Green problem, the presence or absence of poles on the positive time 
axis will be of primary importance. However, not all the poles of rational functions 
represent singularities of the underlying function. Often poles and zeros of rational 
functions are ‘paired’, so that in effect they cancel each other out. This is illustrated 
in figure 7, where the C,, continued fraction has a pole/zero pair at  t x 1.31 which is 
absent in the C,, continued fraction. This suggests that the C,, pole/zero pair is 
spurious. Consequently, i t  is important to determine the positions of both poles and 
zeros in a search for singularities. The position and time at which a singularity 
develops is determined by that unpaired pole lying on the real positive time axis which 
is closest to the origin. 

Wall shear 

In figure 2 the wall shear has been plotted using the ei Pad6 approximant. A 
continuous curve has been drawn where the differences between successive Pad6 
approximants cannot be distinguished to within graphical accuracy. Between 0.6271 
and 0.8271 insufficient terms of the Pad6 approximant are known for an accurate curve 
to be drawn for t 2 2.7. An approximate dashed curve is included fort = 2.8, but the 
spurious poles and zeros present mean that a meaningful curve cannot be drawn for 
t = 3.0. With the exception of positions in the sector 0.621~ 5 x 5 0.8271 when t 2 2.7, 
the agreement between our solution and those of van Dommelen & Shen (1980) and 
Wang (1982) is excellent. 

Following Blasius (1908), many authors have found the time to when the wall shear 
first reverses at x = n, and have plotted the subsequent position of the point of zero 
wall shear 5,. We find that to = 0.64383978, which compares favourably with the 
results of Collins & Dennis (19736): 0.644, Cebeci (1979): 0.640, van Dommelen 
(1981): 0.644 and Hommel (1982): 0.643839707. In  figure 3 we have plotted the 
position of zero wall shear using six different continued fractions. The agreement 
between our results and those of van Dommelen & Shen (1980), in particular, is 
excellent. The dotted line in figure 3 was plotted using two different truncations of 
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t 

FIGURE 3. Position of point of zero wall shear: -, C,,, C,,, C48, C,,, C5,, and C,, continued-fraction 
solutions all superimposed; . . . , solutions from Taylor series with 46 and 50 terms; --, position 
of steady Goldstein singularity found by Terrill (1960) ; 0, van Dommelen & Shen (1980) ; 0, Wang 
(1982). 

the Taylor series for the wall shear. Fort  2 2.2 it is clear that the Taylor series breaks 
down, and the use of rational functions is necessary. 

As t + 00, the position of zero wall shear appears to be tending to the position of 
the Goldstein singularity for steady classical boundary-layer flow past a cylinder 
(Terrill 1960). This is despite the fact that classical boundary-layer theory is known 
not to describe steady flow past a cylinder (Smith 1979). However, if a singularity 
develops a t  some time t ,  and position z,, then it is likely that this singularity will 
disrupt the outer flow and so invalidate figure 3 for the larger values o f t  plotted. 

Displacement thickness 
In figure 4 the displacement thickness has been plotted using the C,, continued 
fraction. For t 2 2.5 a complete curve cannot be drawn because insufficient terms of 
the continued fraction are known. However, at  those values of x for which the 
displacement function can be calculated there is again excellent agreement with the 
solution of van Dommelen & Shen (1980). Good agreement is also found with Wang 
(1982), and on z = n with Robins & Howarth (1972), and Hommel (1982). The latter 
two investigations were concerned with the solution of the similarity equation 
obtained by Taylor-expanding about the rear stagnation point (Proudman & Johnson 
1962). 

The rear stagnation-point flow 
The flow a t  the rear stagnation point has previously been calculated using a 
series-extension technique by Hommel (1982). He solved a system of ordinary 
differential equations similar to (2.3), and obtained coefficients in the Taylor series 
for wall shear and displacement thickness, f:+l(0) andfr+,( 00) respectively, which are 
related to our coefficients by 
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X 

FIGURE 4. Displacement thickness: 0, van Dommelen & Shen (1980), t = 2.5; 0,  Wang (1982), 
t = 2.3; +, Robins & Howarth (1972), t = 0.5, 1.5, 2.5; X ,  Hommel (1982), t = 0.5, 1.5, 2.5. 

His method of numerical integration is similar to ours. However, he used qm = 5 or 
qm = 12.5, fi+l(qm) = 0 and an O(h4) method, as opposed to our larger values of qm, 
asymptotic outer boundary conditions and O(h6) method. 

A comparison of the two sets of wall-shear coefficients is favourable up to r z 32. 
For r 2 34 there is no discernible pattern in the signs of our coefficients, suggesting 
that we have reached the limit of our accuracy (for a general discussion of the sign 
patterns of series coefficients see Van Dyke 1980). Hommel (1982) claims accuracy 
beyond this point, although his sign pattern changes for r > 52. Indeed, Hommel’s 
‘direct ’ expansion method should be more accurate than ours,? because we incur a 
certain loss of accuracy when summing the coefficients in (4.3a, b).  Furthermore, an 
examination of the wall-shear coefficients 

r+1 

P-1 
Z f&(O) sinpx 

for other values of x demonstrates that the error generated by cancellation is most 
severe a t  x = n (e.g. f&(O) = 1.7 x while max,f&(O) = 2.1 x 10-l2). The less 
significant cancellation a t  other angles means that at x =in, for instance, our 
wall-shear coefficients have basic sign pattern + + - - to as many terms as have 
been calculated. $ 

The severe cancellation incurred in summing the wall-shear series ( 4 . 3 ~ )  is absent 
in summing the series (4.3 b). Consequently, our displacement-thickness coefficients 
are found to have the regular sign pattern + + + - - - to as many terms as have 
been calculated. Owing to restrictions in his numerical method, Hommel (1982) 
reports only the first 17 coefficients. It is interesting that he found greater difficulty 
in calculating f,+,( m) than $’+1(0), since our calculations suggest that  we know the 
former to more figures than the latter (see $3). The regularity of the sign pattern of 

t Hommel’s method cannot, however, be extended to z + X .  

$ In fact, this pattern ‘skips EL beat’ at r = 29, but this is not unusual (Van Dyke 1980). 
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t 

0.5 
1 .o 
1.5 
2.0 
2.5 
3.0 
3.5 
4.0 
4.5 
5.0 

Hommel 
7(7L t )  

0.188418298 
-0.340 102048 
-0.666419214 
- 0.884 2 19 20 
- 1.022 39 
-1.10479 
-1.1524 
-1.180 
-1.197 
- 1.210 

Present 
7(% t )  

0.188418335 
-0.340 101 709 
- 0.666417 892 
- 0.884 2 15 56 
- 1.022 382 7 
- 1.104 775 
-1.15242 
-1.1804 
-1.1976 
- 1.209 

Hommel 

1.195974 
2.6026 
4.719 
7.5 

11.0 
15.0 
20.0 

a@, t )  

TABLE 1 

Present 

1.195 984 526 65 
2.602651 66353 
4.720 534699 5 
7.535965 83 

a(% t )  

11.083 600 
15.808 1 
22.662 
33.15 
49.5 
75 

Present 

1.19598452665 
2.602651 66353 
4.720 534699 5 
7.53595583 

&@, t )  

1 1.083 600 
15.808 1 
22.662 
33.15 
49.5 
75 

0 1 2 3 4 5 6 7  

t 

FIGURE 5. Plot of e&&(x, t )  : . . . . . . , C,,, C,,, C4&, C,,, C,,, C,, continued-faction representations; 
-, average of the six continued-fraction solutions. 

both the wall-shear coefficients and the displacement-thickness coefficients gives us 
confidence in our results. 

A comparison of the wall shear and displacement thickness calculated using our 
coefficients and Hommel’s is given in table 1 .  Our results were checked using different 
runs and different-order continued fractions, and are believed to be correct to as many 
figures as are given. The small differences that exist are possibly a result of our more 
accurate numerical method. 

In addition to calculating the displacement thickness by directly recasting the 
simple series using rational functions, we have also calculated d(n,t) by a method 
suggested by Hommel (1982). In  this method, which is based on Proudman & 
Johnson’s (1962) conclusion that S(n, t )  grows like et as t + CO , the series for et is first 
extracted from (4.1 b )  before the continued fraction is formed. Multiplication of this 
continued fraction by the factor et results in the values of the displacement thickness 
$(n, t )  given in table 1 .  We note that there is good agreement with S(n, t ) .  In figure 5 
we have also plotted e-td,(n,t). The dotted lines are the C48, C,,, C,,, C45, C,, and 
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-20 
100 I05 110 115 120 125 130 

e 
FIQUEE 6. Viscous displacement velocity va. 

Ca2 continued fractions. The solid line is the average of these. Our results are in 
reasonable agreement with the prediction that e-t &,(n, t )  tends to a constant as t --f 00. 

Viscous displacement velocity 

The viscous displacement velocity vm has been plotted in figure 6. Except for angles 
close to O =  1 2 4 O ,  the graphs were plotted using the C,, continued fraction. For 
8 z 124' the C,, continued fraction was used owing to the presence of a spurious 
pole/zero pair in the C,, fraction. Figure 6 ( a )  is correct to a t  least graphical accuracy, 
but the curved for large times in figure 6 ( b )  could be up to 10 % out. The C,, and C,, 
continued fractions were used because for t = 2.8 they were the only continued 
fractions that were not disrupted close to the maximum of v, by spurious poles and 
zeros. The rapid growth in the peak of v, suggests the development of a singularity. 

Previous authors have not tabulated v, because i t  can only be obtained indirectly 
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Re ( t )  

Picwas 7. Positions of the poles and zeros of v, in the complex-time plane for 19 = 130': 0,  zero; 
x , pole. Im(t) = 0 drawn using C,,, Im ( t )  < 0 drawn using C,,,. 

from their results (e.g. by the numerical differentiation of &(x, t )  sin x: by z). However, 
it is interesting that the present series method is complementary to other methods 
in that it finds v, to greater accuracy than S and 7 ,  whereas for previous Eulerian 
and Lagrangian methods it was vice versa. 

5. The singularity in o, 
If' a singularity develops in v,, this should be evident by examining the poles and 

zeros of the rational functions in the complex-time plane at various values of 8. I n  
figure 7 the positions of the poles and zeros closest to the origin have been plotted 
for a typical angle in the range of interest (8  = 130'). The poles and zeros of the C,, 
and C4B continued fractions are given in the top and bottom halves of the figure 
respertively. Because the coefficients of the series are real, Im ( t )  > 0 should be the 
complex conjugate of Im( t )  < 0. We note that, in the vicinity of the origin, the 
positioning of the poles and zeros by the two different continued fractions is 
consistent, except for the pole/zero pair a t  t z 1.31 for C,, which has been discussed 
above. Farther from the origin, not enough terms of the continued fraction are known 
to specify the positions of the poles and zeros precisely. The two zeros on the real 
positive axis and the complex-conjugate pair of poles a t  t = (2.35, kO.54i) turn out to 
be of most relevance. As demonstrated below, these poles move toward and then hit 
the real positive time axis as 8 varies, so confirming the presence of a singularity in 
the boundary-layer equations. 

In  figure 8 the motion of these two poles and the neighbouring two zeros is plotted 
as 8 varies. We see that 

(i) for 8 = 75' there is one zero on the negative real axis; 
(ii) as 8 increases through 90' the zero moves through onto the positive real axis; 
(iii) for 8 
(iv) as 8 increases further the pole and zero move towards each other, until, for 

0 zz 1 1  lo, the pole splits into a complex-conjugate pair of poles together with a zero 
on the real axis; 

104O a pole appears on the positive real axis a t  large values o f t ;  
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FIGURE 8. Movement of poles (0) and zeros (0) of 'u, as 0 varies: 0, 75'; 1 ,  90'; 2, 105'; 

3, 107'; 4, 1 1 1 O ;  5, 120°; 6, 130'; 7,  136'; 8, 145'; 9, 160'. 

(v) for larger values of 8 the zeros move towards each other, hit when 8 x 136O, and 
then move off the real axis as a complex-conjugate pair of zeros. 

The prediction of a pole on the real axis confirms the proposals of van Dommelen 
& Shen (1980) and others that a singularity develops in the classical boundary-layer 
equations a t  a finite time t,. The value oft, and the position 8, a t  which the singularity 
develops are determined by the position where the single pole splits into two 
complex-conjugate poles and a zero. We do not have enough terms in our continued 
fractions to determine this precisely. This is because, when two poles and a zero are 
close together, a finite continued fraction tends to approximate them by a single pole. 

In figure 9 we have plotted the coordinates of the poles and zero for those angles 
for which the different-order continued fractions available give a consistent result. 
The portion of the curve plotted for the imaginary coordinate of the pole appears 
approximately linear, but this does not guarantee that the curve will remain linear 
down to Im (t) = 0 (see below). A linear extrapolate predicts that the pole intersects 
the real time axis at 8, x 11 l?. From the coordinate of the single pole on the real time 
axis, it then follows that t, x 3.0. These results are consistent with those given by van 
Dommelen (1981): 8, x l l l . O o ,  t, x 3.00. 

An analytic structure for the boundary-layer singularity has been proposed by van 
Dommelen & Shen (1982). Using a Lagrangian approach they deduced that, for 
t,--t 4 1 ,  

where 
x:--z, - - U,(ts-t)+X(ts-t)~, 

( 5 . 1 ~ )  

(5.1 b)  

G + @ o ( U o + y x )  = 0, Q0 > 0. ( 5 . 1 ~ )  

A, y ,  Go and Us are constants. The form of this singularity has been confirmed by 
Elliott, Cowley & Smith (1983) by means of an Eulerian approach. From (5.1) it 
follows that 
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FIGURE 9. Coordinates of zero and poles in the complex-time plane. Left ordinate is real part of 
t ;  right ordinate is imaginary part oft. @--, real coordinate of zero (6 > OS). e--, real coordinate 
of pole (8 < 8,) ; --, real coordinate of poles (6 > 6,) ;#-, imaginary coordinate of pole in upper 
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It can be shown that the integral in (5 .2)  is a meromorphic function with (i) a 
complex-conjugate pair of poles at X = f iX, = f i(4@,,/27yi)t and (ii) a zero at X ,  on 
the real X-axis. I n  the complex-time plane, the position of the zero of v, is given 
b s  

t ,-t=(,,+(,,  x,-x x,-x ix, cr,+...' 

while the positions of the poles are given by 

(5 .3a)  

(5.3b)  

(5.3c) 

The prediction of (5 .2)  that  for x > x, the local solution for v, near t ,  should include 
two simple poles and a zero is in agreement with our results using continued fractions 
(see figure 8). However, the agreement between (5.3) and figure 9 is less satisfactory. 
In  particular, the slope of the curve for the imaginary coordinate of the pole should 
decrease to zero as x, is approached. I n  contrast, the curves for the real coordinates 
of the poles and zero should be tending to straight lines with the same slope. The 
reason for this mismatch is probably that insufficient terms of the series have been 
calculated. We also conclude that the linear extrapolation of Im (t, - t )  used above 
to find 0, probably yields an overestimate of 6, (compare our prediction of 11 16" and 
the 111.0' of van Dommelen 1981). 

Another possible check of ( 5 . 2 )  is on the maximum value of v,. This should grow 
like ( t ,  - t)-g. Figure 10 is a logarithmic plot of max, (v , )  against t ,  - t obtained using 
the 50-term continued fraction and van Dommelen's value o f t ,  = 3.00. Also plotted 
is a straight line with slope a. The slopes of the two curves are in good agreement. 
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FIGURE 10. Logarithmic plot of max (0,) against ( t , - t ) .  

6 .  Conclusions 
The classical unsteady boundary-layer equations describing impulsive flow past a 

circular cylinder have been studied by extending Blasius' (1908) series solution to 51 
terms. The resulting 676 ordinary differential equations governing the flow have been 
solved using an accurate finite-difference scheme. In order to extend the validity of 
the solution, Blasius' simple series expansion is recast using rational functions. 

Fort 5 2.5 good agreement for the wall shear and displacement thickness is obtained 
between the present work and that of previous authors. For larger times, the presence 
o f  spurious poles and zeros in the rational functions leads to the breakdown of our 
solution for 1 10' 5 8 5 1 4 5 O .  This range o f  8 would be decreased if more terms of the 
series were available. In  the case of the viscous displacement velocity, our solution 
remains valid to slightly larger times. 

An analysis of the poles and zeros of the rational function approximations for v, 
suggests that for 105' 5 8 5 11 1' there is a simple pole on the positive real time axis. 
This pole is closest to the time origin for 8 = 8, w ill', which suggests that a 
singularity will develop in the boundary-layer equations at 8, when t = t, w 3.0. An 
examination o f  the solution of the boundary-layer equations for all x therefore 
predicts the breakdown of this solution a t  a finite time. In  contrast, Proudman & 
Johnson's (1962) similarity solution for the flow at a rear stagnation point exhibits 
breakdown only as t -+ 00.  

For 8 > O,, the present solution for v, predicts that there will be two poles and 
a zero in the neighbourhood of the complex-time plane surrounding t,. In  turn, this 
suggests that max, (v,) should grow like (t,-t)-*, where 1 < q < 2. Both these 
predictions are in agreement with the asymptotic structure proposed for this 
unsteady singularity by van Dommelen & Shen (1982). Further, our results are 
consistent with their proposal that q = a. 

As a result of the development of a singularity, the outer flow will be disturbed 
fort 2 t, (Elliott et al. 1983). Consequently, the present solution may have no relevance 
for t  2 t, for any x. If the outer flow were not changed significantly, the present solution 
would predict that as t increases from t, the singularity would move towards the 
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forward face of the cylinder. I n  particular, i t  suggests that as t + 03 the position of 
the singularity would tend to OG where 104' < OG < 105'. This result is consistent 
with the eventual formation of a steady Goldstein singularity at 8 = 104.5', as 
predicted by Terrill's (1960) solution for steady classical boundary-layer flow past 
a cylinder. 

With hindsight, we see that it would have been possible to  search for the presence 
of singularities in the boundary-layer equations by using the displacement thickness 
instead of 0,. For i t  follows from ( 5 . 1 ~ )  that  there are logarithmic singularities in 
Sat X = iXp. However, while rational functions can represent poles exactly, branch 
points and branch cuts can only be approximated by placing alternate zeros and 
poles along the branch cut. Consequently, rational functions should be able to 
represent v ,  more accurately than 6. This may explain why the present representations 
of v ,  remain valid to  larger times than those for S (compare figures 4 and 6). Certainly, 
i t  should be easier to identify a singularity using u, rather than S. 

The reason why the rational functions have difficulty representing the wall shear 
is less easily understood, for the wall shear remains regular a t  ts (van Dommelen & 
Shen 1982). A tentative explanation might be that the explosive exodus of fluid out 
of the boundary layer for t > t ,  might draw fluid towards 8,, so causing the re-reversal 
of wall shear (the original point of zero wall shear is at 8, < 8,). The formation of 
such a small counter-rotating eddy, which is supported by the experiments of Bouard 
& Coutanceau (1980), would be hard for the rational functions to  imitate, so leading 
to the spurious poles and zeros. A check of this hypothesis could in principle be made 
because van Dommelen & Shen's (1980) Lagrangian method allows integration past 
t,. However, the disadvantage ofa  Lagrangian scheme is that  the fluid particles move 
downstream. To correct for this, the grid points need to be clustered upstream a t  the 
start of the calculation. If van Dommelen & Shen's (1980) rectangular grid were to  
be used, the mesh spacing on the wall near 8, might not be fine enough to detect the 
formation of a small eddy for t > t,. Nevertheless, their Lagrangian scheme does 
appear optimal for t t,. A possible alternative hybrid scheme might therefore be to 
use a series-extension technique or Eulerian scheme up to  t = 2.0, say, and then the 
Lagrangian scheme, but with a less stretched grid, from then on. 

Dr T. J. Pedley and Dr F. T. Smith are thanked for useful discussions. The 
continued-fraction subroutines were kindly supplied by Dr A. J. Roberts and Dr 
J. W. Rottman. 
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